TEKNOLOJİ

VSEP   TECHNOLOGY


While membrane-based separations of liquids from solids have enjoyed increasing popularity over the last 20 years, the technology has an inherent Achilles heel that affects all membrane devices: fouling. This long-term loss in throughput capacity is due primarily to the formation of a boundary layer that builds up naturally on the membranes surface during the filtration process. In addition to cutting down on the flux performance of the membrane, this boundary or gel layer acts as a secondary membrane reducing the native design selectivity of the membrane in use. This inability to handle the buildup of solids has also limited the use of membranes to low-solids feed streams.

To help minimize this boundary layer buildup, membrane designers have used a method known as tangential-flow or cross-flow filtration that relies on high velocity fluid flow pumped across the membranes surface as a means of reducing the boundary layer effect. SEE FİGURE 1In this method, membrane elements are placed in a plate-and-frame, tubular, or spiral-wound cartridge assembly, through which the substance to be filtered (the feed stream), is pumped rapidly.

In cross-flow designs, it is not economic to create shear forces measuring more than 10-15 thousand inverse seconds, thus limiting the use of cross-flow to low-viscosity (watery) fluids. In addition, increased cross-flow velocities result in a significant pressure drop from the inlet (high pressure) to the outlet (lower pressure) end of the device, which leads to premature fouling of the membrane that creeps up the device until permeate rates drop to unacceptably low levels.

 Figure 2

 

New Logic, however, has developed an alternative method for producing intense shear waves on the face of a membrane. The technique is called Vibratory Shear Enhanced Processing (VSEP). In a VSEP System, the feed slurry remains nearly stationary, moving in a leisurely, meandering flow between parallel membrane leaf elements. Shear cleaning action is created by vigorously vibrating the leaf elements in a direction tangent to the faces of the membraneSEE FİGURE 4

The shear waves produced by the membrane's vibration cause solids and foulants to be lifted off the membrane surface and remixed with the bulk material flowing through the membrane stack. This high shear processing exposes the membrane pores for maximum throughput that is typically between 3 and 10 times the throughput of conventional cross-flow systems. (SEE FİGURE   2above)

The VSEP membrane filter pack consists of leaf elements arrayed as parallel discs and separated by gaskets. The disc stack resembles records on a record changer with membrane on each side.

 

The disk stack is oscillated above a torsion spring that moves the stack back and forth approximately 7/8 inches (2.22 centimeters). This motion is analogous to the agitator of a washing machine but occurs at a speed faster than that which can be perceived by the human eye.

The oscillation produces a shear at the membrane surface of about 150,000 inverse seconds (equivalent to over 200 G's of force), which is approximately ten times the shear rate of the best conventional cross-flow systems. More importantly, the shear in a VSEP System is focused at the membrane surface where it is cost effective and most useful in preventing fouling, while the bulk fluid between the membrane disks moves very little.

 Because VSEP does not depend on feed flow induced shearing forces, the feed slurry can become extremely viscous and still be successfully dewatered. The concentrate is essentially extruded between the vibrating disc elements and exits the machine once it reaches the desired concentration level. Thus, VSEP Systems can be run in a single pass through the system, eliminating the need for costly working tanks, ancillary equipment and associated valving.

The disc pack holdup volume of a system with 1,400 ft2 (130 sq. meters) of membrane area, is less than 50 gallons (189 liters). As a result, product recovery in batch processes can be extremely high. Waste after draining the stack is less than 3 gallons

Yorum Yaz
Arkadaşların Burada !
Arkadaşların Burada !